ondrives Precision Gears

Spur Gears

Description	Symbo	l Unit	Equation
Normal Module	m _n		
Transverse Module	m _t		= m _n
Normal Pressure Angle	α_{n}	degrees	= 20°
Transverse Pressure Angle	α_t	degrees	$= \alpha_n$
Number of Teeth	Z		
Profile Shift Coefficient	Х		= zero for Ondrives standard gears
Addendum	ha	mm	= $1.00 \cdot m_n$ (for Ondrives standard gears)
Dedendum	hf	mm	= $1.25 \cdot m_n$ (for Ondrives standard gears)
Tooth Depth	h	mm	= $2.25 \cdot m_n$ (for Ondrives standard gears)
Gear Ratio	u		$= z_2 / z_1$
Centre Distance	а	mm	$= (d_1 + d_2) / 2$
Pitch Circle Diameter	d	mm	$= z \cdot m_n$
Tip Diameter	da	mm	$= d + (2m_n \cdot x) + (2 \cdot m_n)$
Root Diameter	dr	mm	$= d_a - (2 \cdot h)$
Normal Pitch	p _n	mm	$= \pi \cdot m_n$
Normal Tooth Thickness in Pitch Circle	Sn	mm	$= (p_n / 2) + 2m_n \cdot x \cdot \tan \alpha_n$

When working with a pair of gears the subscript $_1$ and $_2$ denotes input (drive) and output (driven) gear. Tip diameter is the theoretical diameter of the gear without tooth thickness tolerance applied. For s_n when x = zero, this is the theoretical tooth thickness. Actual tooth thickness will be less. The subscript $_{\mathbf{e}}$ is for upper allowance values and $_{\mathbf{i}}$ for lower allowance values.

Spur Gears

Gear Quality

Standard metal gears are supplied to quality Grade 7 DIN 3961 based on Pitch total deviation F_p, Pitch deviation f_p, Radial runout F_r and Pitch error f_u. Skive hobbed gears are supplied to quality Grade 6 DIN 3961.

GG25 Cast Iron, PEEK GF30[®] and Delrin (POM) are supplied to quality Grade 8 DIN 3961.

Ondrives can manufacture gears to higher grades on request. Ondrives can offer testing certification for a gear's individual parameters using the latest CMM machine with gear measuring software.

Double and single flank testing is available on request. Please contact our technical department for details.

Comparisons of Grade Standards

Example 3 mod, 50 teeth, 30mm face width spur gear.

	Standard	DIN 3961	DIN 3961	ISO 1328	AGMA
	Grade	6	7	7	10
Pitch total deviation	F _p µm	32	44	50	51
Pitch deviation	f _p μm	8	12	13	13
Radial runout	F _r μm	22	31	40	41
Pitch error	f _u μm	10	15	-	-
Double flank composite transmission error	F _i " μm	26	36	61	61
Double flank tooth-to-tooth transmission error	f _i " μm	11	15	21	20

Torque

Stated value for metal spur gears is maximum torque (T_2) based on two identical gears with the same number of teeth running at standard centres. Value is minimum from surface stress or bending stress.

Other factors including duty cycle and temperature will affect maximum allowable torque and service life. Wear is dependant on lubrication. We recommend that each user compute their own values based on actual operating conditions and test in application.

Materials	817M40	805M20	303 Stainless	316 Stainless	GG25 Cast Iron
Input Speed		100 rpm Unifo	rm, 12 hours ru	unning per day	/
Bending Stress Factor S _b	32,000	50,000	20,000	15,800	7,600
Surface Stress Factor S _c	3,000	11,000	1,800	1,400	1,350

Stated value for plastic spur gears is maximum torque (T₂) based on two identical gears with the same number of teeth running at standard centres. Value is minimum from surface stress, bending stress or bulk/surface temperature using method from BS 6168:1987.

The torque capacity of plastic gears is highly dependant on operating condition. All values are reference only. We recommend that each user test in application under specific operation conditions of application.

Materials	Delrin POM (White)	PEEK GF30 [®] (Light Brown)
Input Speed / No. of Load Cycles	100 rpm / 10 ⁸	100 rpm / 10 ⁸
Limiting Bending Stress	22.0 N/mm ²	30 N/mm ^{2*}
Limiting Surface Stress	22.0 N/mm ²	80 N/mm ^{2*}
Initial Temperature	20°C	20°C
Max. Bulk or Surface Temperature	60°C	80°C
Coefficient of Friction	0.18 (Dry)	0.25**

* Reference Only ** Approximate value based on initial light greasing.

Maximum torque for titanium gears is approximately 30% of 817M40 steel gears.

Due to lack of stress factors we are unable to offer specific values. Testing in application is required.

Torque for anti-backlash spur gears is limited by the spring rating. Please contact our Technical department for details.

When selecting gears application factors should be applied to required torque.

 $T_2 > T_{required} \times K_a$ Application factor K_a

Working characteristics	Working characteristics of driven machine						
of driving machine	Uniform	Light Shocks	Moderate Shocks	Heavy Shocks			
Uniform	1.00	1.25	1.50	1.75			
Light Shocks	1.10	1.35	1.60	1.85			
Moderate Shocks	1.25	1.50	1.75	2.00			
Heavy Shocks	1.50	1.75	2.00	2.25+			

T: +44 1246 455500

sales@ondrives.com www.ondrives.com

ondri Precision Gears

Parallel **Helical Gears**

Description	Symbol	Unit	Equation
Normal Module	m _n		
Transverse Module	m _t		$= m_n / \cos \beta$
Axial Module	m _x		$= m_n / \sin \beta$
Normal Pressure Angle	α_{n}	degrees	= 20°
Transverse Pressure Angle	α_t	degrees	= tan ⁻¹ (tan α_n / cos β)
Helix Angle	β	degrees	= 15°
Lead Angle	λ	degrees	= 90 - β
Number of Teeth	Z		
Profile Shift Coefficient	Х		= zero for Ondrives standard gears
Addendum	ha	mm	= $1.00 \cdot m_n$ (for Ondrives standard gears)
Dedendum	hf	mm	= $1.25 \cdot m_n$ (for Ondrives standard gears)
Tooth Depth	h	mm	= $2.25 \cdot m_n$ (for Ondrives standard gears)
Gear Ratio	u		$= z_2 / z_1$
Centre Distance	а	mm	$= (d_1 + d_2) / 2$
Pitch Circle Diameter	d	mm	$= z \cdot m_t = (z \cdot m_n) / \cos \beta$
Tip Diameter	da	mm	$= d + (2m_n \cdot x) + (2 \cdot m_n)$
Root Diameter	dr	mm	$= d_a - (2 \cdot h)$
Normal Pitch	p _n	mm	$= \pi \cdot m_n$
Transverse Pitch	pt	mm	$= \pi \cdot m_t = (\pi \cdot m_n) / \cos \beta$
Axial Pitch	p _x	mm	$= \pi \cdot m_x = (\pi \cdot m_n) / \sin \beta$
Normal Tooth Thickness in Pitch Circle	Sn	mm	$=$ (p _n / 2) + 2m _n · x · tan α_n
Transverse Tooth Thickness in Pitch Circle	e s _t	mm	= $(p_t / 2) + 2m_n \cdot x \cdot \tan \alpha_t = S_n / \cos \beta$

When working with a pair of gears the subscript $\mathbf{1}$ and $\mathbf{2}$ denotes input (drive) and output (driven) gear. Tip diameter is the theoretical diameter of the gear without tooth thickness tolerance applied. For $s_n \& s_t$ when x = zero, this is the theoretical tooth thickness. Actual tooth thickness will be less. The subscript **e** is for upper allowance values and **i** for lower allowance values.

For two helical gears to run together one must be left hand and the other right hand helix.

Parallel Helical Gears

Gear Quality

Standard gears are supplied to quality grade 7e25 DIN 3961 based on the following parameters

Radial Runout F_r =
$$\left(\left(1.68 + 2.18\sqrt{m_n} + (2.3 + 1.2\log m_n) \cdot d^{\frac{1}{4}}\right) \cdot 1.4\right) \cdot 1.4$$

Pitch Deviation f_p = $\left(\left(4 + 0.315\left(m_n + 0.25\sqrt{d}\right)\right) \cdot 1.4\right) \cdot 1.4$
Total Pitch Deviation F_p = $\left(7.25 \cdot \frac{d^{\frac{1}{3}}}{z^{\frac{1}{7}}}\right) \cdot 1.4\right) \cdot 1.4$

Pitch Error $f_u = ((5 + 0.4(m_n + 0.25\sqrt{d})) \cdot 1.4) \cdot 1.4$

Ondrives manufacture gears to higher quality grades on request. Ondrives can offer testing certification of a gears individual parameters using the latest CMM machine with gear measuring software. Double and single flank testing is available on request. Please contact our technical department for details.

Comparisons of Grade Standards

Example 3 mod, 50 teeth, 30mm face width 15° helix parallel helical gear.

	Standard Grade	DIN 3961 7	ISO 7	AGMA 10
Pitch total deviation	F _p μm	47	50	55
Pitch deviation	f _p μm	12	13	12
Radial runout	F _r μm	31	40	44
Pitch error	f _u μm	15	-	-
Double flank composite transmission error	F _i " μm	36	61	65
Double flank tooth-to-tooth transmission error	f _i " μm	15	21	20

Torque

Stated value for metal spur gears is maximum torque (T₂) based on two identical gears with the same number of teeth running at standard centres. Value is minimum from surface stress or bending stress.

Other factors including duty cycle and temperature will affect maximum allowable torque and service life. Wear is dependant on lubrication. We recommend that each user compute their own values based on actual operating conditions and test in application.

Materials	817M40	805M20	303 Stainless	316 Stainless		
Input Speed	100	rpm Uniform, 12 h	nours running per	day		
Bending Stress Factor Sb	32,000	50,000	20,000	15,800		
Surface Stress Factor S _c	3,000	11,000	1,800	1,400		
When selecting gears application factors should be applied to required torque.						

 $T_2 > T_{required} \times K_a$ Application factor K_a

Working characteristics	Working characteristics of driven machine						
of driving machine	Uniform	Light Shocks	Moderate Shocks	Heavy Shocks			
Uniform	1.00	1.25	1.50	1.75			
Light Shocks	1.10	1.35	1.60	1.85			
Moderate Shocks	1.25	1.50	1.75	2.00			
Heavy Shocks	1.50	1.75	2.00	2.25+			

ondrives Precision Gears

Crossed Axis Helical Gears

Description	Symbo	ol Unit	Equation
Normal Module	m _n		
Transverse Module	m _t		$= m_n / \cos \beta$
Axial Module	m _x		$= m_n / \sin \beta$
Normal Pressure Angle	α_{n}	degrees	= 20°
Transverse Pressure Angle	α_t	degrees	= tan ⁻¹ (tan α_n / cos β)
Helix Angle	β	degrees	= 45°
Lead Angle	λ	degrees	= 90 - β
Number of Teeth	Z		
Profile Shift Coefficient	Х		= zero for Ondrives standard gears
Addendum	ha	mm	= $1.00 \cdot m_n$ (for Ondrives standard gears)
Dedendum	hf	mm	= $1.25 \cdot m_n$ (for Ondrives standard gears)
Tooth Depth	h	mm	= $2.25 \cdot m_n$ (for Ondrives standard gears)
Gear Ratio	U		$= z_2 / z_1$
Centre Distance	а	mm	$= (d_1 + d_2) / 2$
Pitch Circle Diameter	d	mm	$= z \cdot m_t = (z \cdot m_n) / \cos \beta$
Tip Diameter	da	mm	$= d + (2m_{\text{N}} \cdot x) + (2 \cdot m_{\text{N}})$
Root Diameter	dr	mm	$= d_a - (2 \cdot h)$
Normal Pitch	p _n	mm	$= \pi \cdot m_n$
Transverse Pitch	pt	mm	$= \pi \cdot m_t = (\pi \cdot m_n) / \cos \beta$
Axial Pitch	p _x	mm	$= \pi \cdot m_x = (\pi \cdot m_n) / \sin \beta$
Normal Tooth Thickness in Pitch Circle	Sn	mm	$=$ (p _n / 2) + 2m _n · x · tan α_n
Transverse Tooth Thickness in Pitch Circl	e s _t	mm	$= (p_t / 2) + 2m_n \cdot x \cdot tan \alpha_t$

When working with a pair of gears the subscript $_1$ and $_2$ denotes input (drive) and output (driven) gear. Tip diameter is the theoretical diameter of the gear without tooth thickness tolerance applied. For s_n & s_t when x = zero, this is the theoretical tooth thickness. Actual tooth thickness will be less. The subscript $_{\mathbf{e}}$ is for upper allowance values and $_{\mathbf{i}}$ for lower allowance values.

For two crossed axis helical gears to run together both must be right hand or left hand helix.

а

Precision Gears

Crossed Axis Helical Gears

Direction of Rotation

Torque

Stated value is maximum torque (T₂) based on two identical gears with the same number of teeth running at standard centres.

Crossed axis helical gears transmit load by point contact. The limiting condition is typically surface stress. Other factors including duty cycle and temperature will affect maximum allowable torque and service life. Wear is dependent on lubrication.

We recommend that each user compute their own values based on actual operating conditions and test in application.

Materials	817M40	805M20 (SAE 8620) Case Hardened
Input Speed	100 rp	m uniform speed
Bending Stress Factor S _b	32,000	50,000
Surface Stress Factor S _c	3,000	11,000
Lubrication		Mineral Oil
Lubrication Viscosity	Between 60mm	n²/s and 130mm²/s at 60°C

When selecting gears application factors should be applied to required torque.

 $T_2 > T_{required} \times K_a$ Application factor K_a

Working characteristics	s Working characteristics of driven machine						
of driving machine	Uniform	Light Shocks	Moderate Shocks	Heavy Shocks			
Uniform	1.00	1.25	1.50	1.75			
Light Shocks	1.10	1.35	1.60	1.85			
Moderate Shocks	1.25	1.50	1.75	2.00			
Heavy Shocks	1.50	1.75	2.00	2.25+			

T: +44 1246 455500

sales@ondrives.com www.ondrives.com

ondrives Precision Gears Worms & Wheels

Description	Symbol	Unit	Equation
Axial Module	m _x		
Normal Module	m _n		$= m_x \cdot \cos \lambda$
Normal Pressure Angle	αη	degrees	= 20°
Transverse Pressure Angle	α_t	degrees	= tan ⁻¹ (tan α_n / cos λ)
Lead Angle	λ	degrees	$= tan^{-1} ((m_x \cdot z_1) / d_1)$
Helix Angle	β	degrees	= 90 - λ
Number of Starts on Worm	Z1		
Number of Teeth on Wheel	Z2		
Profile Shift Coefficient	Х		= zero for Ondrives standard worms
Addendum	ha	mm	= $1.00 \cdot m_x$ (for Ondrives standard worms)
Dedendum	hf	mm	= $1.25 \cdot m_x$ (for Ondrives standard worms)
Tooth Depth	h	mm	= $2.25 \cdot m_x$ (for Ondrives standard worms)
Gear Ratio	U		$= z_2 / z_1$
Centre Distance	а	mm	$= (d_1 + d_2) / 2$
Reference Diameter of Worm	d ₁	mm	$= (m_X \cdot z_1) / \tan \lambda$
Reference Diameter of Wheel	d ₂	mm	$= m_x \cdot z_2$
Tip Diameter of Worm	d _{a1}	mm	$= d_1 + (2 \cdot m_x)$
Root Diameter of Worm	d _{r1}	mm	$= d_{a1} - (2 \cdot h)$
Tip Diameter of Wheel	d _{a2}	mm	$= d_2 + (2 \cdot m_x)$
Root Diameter of Wheel	d _{r2}	mm	$= d_{a2} - (2 \cdot h)$
Outside Diameter of Wheel	d _{e2}	mm	$= d_{a2} + m_x$
Normal Pitch	p _n	mm	$= \pi \cdot m_n$
Axial Pitch	p _x	mm	$= \pi \cdot m_x$
Normal Tooth Thickness in Pitch Circle	S _n	mm	$= s_{X} \cdot \cos \lambda$
Transverse Tooth Thickness in Pitch Circle	S _X	mm	$= (p_{x} / 2)$

Quality

Steel and Stainless Steel worm = Quality 6, DIN 3974. Bronze wormwheel = Quality 7, DIN 3974. PEEK and Delrin worms = Quality 7, DIN 3974. PEEK and Delrin wormwheel = Quality 8, DIN 3974.

When working with a gear set, the subscript $_1$ denotes a worm and $_2$ a wormwheel. Tip diameter is the theoretical diameter of the gear without tooth thickness tolerance applied. For $s_n \& s_x$ when x = zero, this is the theoretical tooth thickness. Actual tooth thickness will be less. The subscript $_e$ is for upper allowance values and $_i$ for lower allowance values.

Precision Gears

Torque

Stated value is maximum torque based on lowest figure from surface durability, tooth root strength or wear. Values for bronze and cast iron wheel are for matching with steel 817M40 worm. Value is output torque (T_2) at wheel.

Tooth root failure of teeth on wheel before teeth of worm is assumed.

Other factors including worm shaft deflection, duty cycle and temperature will affect maximum allowable torque and service life. Wear is dependent on lubrication.

We recommend that each user compute their own values based on actual operating conditions and test in application.

	Delrin POM	PEEK GF30 [®]
Maximum torque as % of CA104 Aluminium Bronze Wheel	50%*	55 - 65%*
Maximum Wheel Temperature	60°C	80°C

* Approximate value based on plastic wheel running with steel worm to allow initial selection. Testing in application will be required.

Torque for anti backlash wormwheel gears is limited by the spring rating. Please contact our Technical department for details.

When selecting gears application factors should be applied to required torque.

 $T_2 > T_{required} \times K_a$ Application factor K_a

Working characteristics	Working characteristics of driven machine					
of driving machine	Uniform	Light Shocks	Moderate Shocks	Heavy Shocks		
Uniform	1.00	1.25	1.50	1.75		
Light Shocks	1.10	1.35	1.60	1.85		
Moderate Shocks	1.25	1.50	1.75	2.00		
Heavy Shocks	1.50	1.75	2.00	2.25+		

Efficiency

The following allows an approximate value for the efficiency of the gears to be found allowing required input torque and gear

forces to be calculated. Efficiency is dependant on lubrication and the figures below do not include bearing, seal and other losses.

$$\begin{split} \eta &= \tan\lambda / \tan\left(\lambda + \mathit{pz}\right) \\ \mathit{pz} &= \arctan\left(\mu\right) \\ v_g &= (d_1 \cdot n_1) / \left(19098 \, . \, \cos\lambda\right) \\ T_1 &= (T_2 / u) * \eta \end{split}$$

- $T_1 =$ Input Torque (Nm)
- $T_2 = Output Torque (Nm)$
- u = Ratio
- $\eta = \text{Efficiency}$
- λ = Lead Angle (degrees)
- μ = Coefficient of Friction
- pz = Angle of Friction
- $v_{g} = Sliding Velocity (m/s)$
- $n_1 = rpm of Worm$
- d_1 = Reference Diameter of Worm (mm)

Coefficient of friction µ (Mineral Oil)

Velocity										
Range	μ for Velocities 0-30m/s									
(m/s)	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.0-0.9	0.1500	0.0803	0.0694	0.0623	0.0583	0.0543	0.0521	0.0500	0.0480	0.0459
1.0-1.9	0.0438	0.0423	0.0410	0.0396	0.0382	0.0369	0.0359	0.0352	0.0344	0.0336
2.0-2.9	0.0329	0.0322	0.0316	0.0309	0.0304	0.0297	0.0293	0.0289	0.0286	0.0280
3.0-3.9	0.0276	0.0272	0.0268	0.0265	0.0261	0.0257	0.0254	0.0251	0.0248	0.0245
4.0-4.9	0.0242	0.0239	0.0236	0.0234	0.0232	0.0229	0.0226	0.0224	0.0223	0.0221
5.0-5.9	0.0219	0.0217	0.0215	0.0214	0.0212	0.0210	0.0209	0.0207	0.0205	0.0203
6.0-6.9	0.0202	0.0200	0.0199	0.0197	0.0196	0.0194	0.0193	0.0192	0.0190	0.0189
7.0-7.9	0.0187	0.0186	0.0185	0.0184	0.0183	0.0182	0.0181	0.0179	0.0178	0.0177
8.0-8.9	0.0176	0.0175	0.0174	0.0173	0.0173	0.0172	0.0172	0.0170	0.0169	0.0169
9.0-9.9	0.0169	0.0168	0.0166	0.0166	0.0164	0.0164	0.0164	0.0163	0.0162	0.0162
10.0-10.9	0.0161	0.0160	0.0159	0.0159	0.0159	0.0158	0.0157	0.0156	0.0156	0.0156
11.0-11.9	0.0155	0.0154	0.0154	0.0153	0.0153	0.0152	0.0151	0.0151	0.0150	0.0150
12.0-12.9	0.0149	0.0149	0.0149	0.0148	0.0148	0.0147	0.0147	0.0147	0.0146	0.0146
13.0-13.9	0.0146	0.0146	0.0146	0.0145	0.0145	0.0144	0.0144	0.0144	0.0144	0.0144
14.0-14.9	0.0143	0.0143	0.0143	0.0142	0.0142	0.0142	0.0142	0.0142	0.0141	0.0141
15.0-15.9	0.0141	0.0141	0.0141	0.0140	0.0140	0.0139	0.0139	0.0139	0.0139	0.0139
16.0-16.9	0.0139	0.0138	0.0138	0.0138	0.0138	0.0138	0.0137	0.0137	0.0137	0.0137
17.0-17.9	0.0137	0.0136	0.0136	0.0136	0.0136	0.0136	0.0135	0.0135	0.0135	0.0135
18.0-18.9	0.0135	0.0134	0.0134	0.0134	0.0134	0.0134	0.0134	0.0134	0.0134	0.0134
19.0-19.9	0.0134	0.0133	0.0133	0.0133	0.0133	0.0133	0.0132	0.0132	0.0132	0.0132
20.0-20.9	0.0132	0.0131	0.0131	0.0131	0.0131	0.0131	0.0131	0.0131	0.0131	0.0131
21.0-21.9	0.0131	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130
22.0-22.9	0.0130	0.0129	0.0129	0.0129	0.0129	0.0129	0.0129	0.0129	0.0129	0.0129
23.0-23.9	0.0129	0.0129	0.0128	0.0128	0.0128	0.0128	0.0128	0.0128	0.0128	0.0128
24.0-24.9	0.0128	0.0128	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127
25.0-25.9	0.0127	0.0127	0.0126	0.0126	0.0126	0.0126	0.0126	0.0126	0.0126	0.0126
26.0-26.9	0.0126	0.0126	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125
27.0-27.9	0.0125	0.0125	0.0124	0.0124	0.0124	0.0124	0.0124	0.0124	0.0124	0.0124
28.0-28.9	0.0124	0.0124	0.0124	0.0124	0.0124	0.0124	0.0124	0.0124	0.0123	0.0123
29.0-29.9	0.0123	0.0123	0.0123	0.0123	0.0123	0.0123	0.0123	0.0123	0.0123	0.0123
30.0	0.0123	-	-	-	-	-	-	-	-	-

Example: if Vg = 1.2 then μ = 0.0410

sales@ondrives.com www.ondrives.com

Gear Forces and Direction of Rotation

$$\begin{split} & F_{tm1} = 2000^* \left(T_1 \ / \ d_1 \right) = - \ F_{xm2} \\ & F_{tm2} = 2000^* \left(T_2 \ / \ d_2 \right) = - \ F_{xm1} \\ & F_{rm1} = \ F_{tm1}^* \left[\tan 20 \ / \ (\sin \lambda + p_Z) \ \right] = - \ F_{rm2} \end{split}$$

 $\begin{array}{l} pz = \arctan{(\mu)} \\ F_{tm} = Tangential \mbox{ force (N)} \\ F_{xm} = Axial \mbox{ force (N)} \\ F_{rm} = Radial \mbox{ force (N)} \\ When \mbox{ working with a gear set, the subscript } {\bf 1} \mbox{ denotes a worm and } {\bf 2} \mbox{ a wormwheel.} \end{array}$

Ondrives worm and wheel gears are supplied right hand lead as standard. The arrows show the direction of rotation.

ondrives Precision Gears

Bevel Gears

Description	Symbol	Unit	Equation
Normal Module	m _n		
Pressure Angle	α	degrees	= 20°
Shaft Angle	Σ	degrees	= (90° for Ondrives standard gears)
Number of Teeth	Z ₁ , Z ₂		
Gear Ratio	u		$= z_2 / z_1$
Pitch Diameter of Worm	d ₁ , d ₂	mm	$= z \cdot m_n$
Pitch Cone Angle	δ_1	degrees	$= \delta_1 = \tan^{-1} (\sin \Sigma / (u + \cos \Sigma))$
Pitch Cone Angle	δ_2	degrees	$=\delta_2 = \Sigma - \delta_1$
Cone Distance	R _e	mm	$= d_2 / 2 \sin \delta_2$
Addendum	ha	mm	$= 1.00 \cdot m_{\text{N}}$ (for Ondrives standard gears)
Dedendum	hf	mm	0.6 to $1.0m_n = 1.25 \cdot m_n$ (standard gears)
			1.5 to 2.0m _n = $1.22 \cdot m_n$ (standard gears)
			$4.0m_n = 1.20 \cdot m_n$ (standard gears)
Outside Diameter	da	mm	$= d + 2 h_a \cdot \cos \delta$
Pitch Apex to Crown	Х	mm	$= R_e \cos \delta - h_a \sin \delta$

Quality Grade 7 DIN 3965

Torque

Stated value is maximum torque (T_2) based on two identical gears with the same number of teeth running at standard centres. Value is minimum from surface stress or bending stress.

Other factors including duty cycle and temperature will affect maximum allowable torque and service life. Wear is dependent on lubrication.

We recommend that each user compute their own values based on actual operating conditions and test in application.

Materials	817M40	805M20	303 Stainless	316 Stainless
Input Speed	100	rpm Uniform, 12 k	nours running per	day
Bending Stress Factor Sb	32,000	50,000	20,000	15,800
Surface Stress Factor S _c	3,000	11,000	1,800	1,400

Ondrives can manufacture gears in a range of additional materials including bronzes, engineering plastics, special steels and stainless steels.

Gears can be heat treated by a range of methods to improve performance. Please contact our Technical sales team who will be happy to discuss your specific requirements.

		Density	Elongation after	Tensile Strength	0.2% Proof Stress
Material		(Kg/m³)	Fracture	(N/mm²)	(N/mm²)
805M20	Case Hardened	7,850	11%	980	785
817M40T		7,850	5 - 13%	850 - 100	680
080M40		7,850	7 - 17%	510 - 600	340
722M24T	Nitride Hardened	7,850	13%	850 -1000	650
303S21	Cold Drawn	8,000	35 - 45%	480 - 510	180 - 200
316S16	Cold Drawn	8,000	40%	515	205
17-4PH	Condition A	7,780	10%	1103	100
CA104		7,580	15%	750	430
PB2	Sand Cast	8,600	5%	360 - 500	170 - 280
Brass CZ121		8,470	20%	410	200
PEEK GF30		1,490	2.7%	156	-
Delrin POM		1,410	30%	67	-
Cast Iron GG25	Continuous Cast	7,200	-	145 - 195	-
Titanium Ti-6AL-4V	Grade 5	4,420	10 - 18%	895 -1000	828 - 910

Material Equivalents

B.S. 970	En	DIN	Werkstoff	SAE/AISI
817M40T	24T	40NiCrMo8-4 / 34CrNiMo6	1.6562, 1.6582	4340, 4337
805M20	362	20NiCrMo2-2 / 20NiCrMo2	20NiCrMo2-2/20NiCrMo2 1.6523	
303S21	58	X10CrNiS189	1.4305	303
316S16	58J	X5CrNiMo17133	1.4436	316
080M40	8	C40	1.0511	1040
655M13	36	14NiCr14	1.5752	3415, 3310, 9314
722M24	40B	32CrMo12	1.7361	-
	ISO	DIN		SAE/AISI
PB2	Cu89Sn11	CuSn12		SAE 64
CA104	GZ-CuAL10Ni	CuAL10Ni		ASTM B150 UNC C63200
Brass CZ121	CuZn39Pb3	-		UNC C38500
B.S. 1452	En	DIN		
Cast Iron 250	EN-GJL-250	DIN 1691 GG25		
	B.S.	UNS	Werkstoff	AMS
Titanium Ti-6AL-4V	2TA11	R56400	3.7165	4911/4928

T: +44 1246 455500 sales@ondrives.com www.ondrives.com

Materials

Delrin POM (White)

DIN EN ISO 1043-1: POM C | polyacetal comopolymer. Very good dimensional stability compared to Nylon & Hostaform. Minimal absorption of moisture. Good sliding properties. High wear resistance. High surface hardness. High mechanical strength and stiffness compared to Nylon & Hostaform. Can be in contact with food (FDA). Delrin gears can be run dry or greased/oiled to improve wear.

PEEK GF30[®] (Light Brown)

DIN EN ISO 1043-1: PEEK | polyetheretherketone. Excellent dimensional stability. Outstanding high mechanical strength and hardness over a broad temperature range. Shows only a slight distortion under the impact of mechanical load and high temperature. Good electrical insulating properties. Extremely high flame resistance. Self-extinguishing. Very low smoke emission in a case of a fire. Can be run dry for slow speed hand operation. Gears should be greased/oiled for all other operating conditions.

General Properties Delrin POM PEEK GF30® Density kg/m³ 1410 1490 Absorption of Moisture 0.20% 0.14% **Mechanical properties** Yield Stress/ Tensile Strength N/mm² 67 156 Elongation at Break 30.0% 2.7% Tensile Modulus of Elasticity N/mm² 2800 9700 **Ball Indentation Hardness** N/mm^2 150 230 Shore - Hardness Skala D 81 88 0.38-0.46 Coefficient of Friction against hardened and ground steel (dry) 0.10-0.30 **Thermal Properties** Melting Temperature ° 165 343 Thermal Properties $W / (m \cdot K)$ 0.31 0.43 Coefficient of Linear Thermal Expansion 10-6 K-1 110 30 Service Temperature, long term (min.) °C -50 -20 Service Temperature, long term (max.) °C 100 250 Service Temperature, short term ° 140 310 °C Heat Deflection Temperature 110 315 **Electrical Properties Dielectric Constant** 3.80 3.20 **Dielectric Dissipation Factor** 0.001 0.002 Specific Volume Resistivity 1014 $\Omega \cdot cm$ 1013 Surface Resistivity Ω 1013 1013 Comparative Tracking Index (test solution A) 600 175 Dielectric Strength kV/mm 40 20

Backlash

The backlash figures given for spur, helical and crossed axis helical gears is the theoretical backlash for two identical gears at standard centre distance to the ISO 286 centre distance tolerance.

It is given as circumferential backlash in mm measured on pitch circle diameter. An upper and lower value is guoted. Theoretical backlash is the difference between tooth thickness without and with tolerance applied. Backlash is calculated according to DIN 3967

Ondrives can manufacture gears to a wide range of tolerances to suit customer application.

Please contact our Technical Sales team who will be happy to discuss your specific requirements.

Tooth Thickness Tolerances

Gear Type	Module 0.5 to 0.8	Module 1.0 to 3.0	Centre Distance Tol.
Spur	7e/8e DIN 58405	e25 DIN 3967	Js7
Spur (Skive hobbed)	6e DIN 58405	e25 DIN 3967	Js7
Pinion	7e DIN 58405	e25 DIN 3967	-
Parallel Helical	7e DIN 58405	e25 DIN 3967	Js7
Crossed Axis Helical	7e DIN 58405	e25 DIN 3967	Js8
Worm & Wormwheel	7e/8e DIN 58405	e25 DIN 3967	Js8
Gear Type	Module 0.6 to 4.0		
Bevel	7f24 DIN 3965/3967		

 A_{sn} = Tooth thickness allowance which is the difference between measured gear tooth thickness and theoretical value measured in the normal section. When working with a pair of gears the subscript 1 and 2 denotes input (drive) and output (driven) gear.

For worm and wheel, 1 relates to the worm and 2 to the wormwheel.

The subscript **e** is for upper allowance and **i** for lower allowance. T_{sn} = Tooth thickness tolerance measured in the normal section. (mm)

$$A_{sne} = S_n - S_{ne}$$

 $A_{sni} = A_{sne} - T_{sn} = S_n - S_{ni}$

Circumferential Backlash jt

This is the length of arc on the pitch circle diameter through which each can be rotated whilst the other is held stationary. It is measured in the transverse section.

 $j_t = \frac{A_{sn1} + A_{sn2}}{\cos \beta} + \Delta j_a$ Units = mm & degrees

Normal Backlash jn

This is the shortest distance between the flanks of the gears when the opposite flanks are in contact. It is measured in the transverse section.

For spur, helical, crossed axis helical gear

 $j_n = j_t \bullet \cos \alpha_n \bullet \cos \beta$ Units = mm & degrees

Change in Circumferential due to Centre Distance Tolerance $\Delta j_{\textbf{a}}$

$$\Delta j_a = 2 \bullet A_s \bullet \frac{\tan \alpha_n}{\cos \beta} \quad \text{Units} = \text{mm \& de}$$

Spur C Deviation from	Gear Change in Backlach	Parallel Hel Deviation from	Parallel Helical Gear Deviation from Change in		Helical Gear Change in Backlach
A _c (mm)		Centre Distance Δ _e (mm)		Centre Distance Δ _e (mm)	
0.001	0.001	0.001	0.001	0.001	0.001
0.010	0.007	0.010	0.008	0.010	0.010
0.015	0.011	0.015	0.011	0.015	0.015
0.020	0.015	0.020	0.015	0.020	0.021
0.025	0.018	0.025	0.019	0.025	0.026
0.030	0.022	0.030	0.023	0.030	0.031
0.035	0.025	0.035	0.026	0.035	0.036
0.040	0.029	0.040	0.030	0.040	0.041
0.045	0.033	0.045	0.034	0.045	0.046
0.050	0.036	0.050	0.038	0.050	0.051

T: +44 1246 455500

sales@ondrives.com www.ondrives.com

Angular Backlash j_{θ}

 $j_{\theta} = \frac{360 \times j_t}{\pi \times d_2}$

Units = mm & degrees

- d_2 = Reference diameter (mm)
- A_s = Centre distance tolerance (i.e. a = 30mm Js7, A_s = ±0.0105mm)
- α_n = Normal pressure angle (α_n = 20°)
- = Helix angle (β = zero for spur gears) β
- Replace helix angle β with lead angle λ for worm and wheel.
- $1^{\circ} = 60 \text{ arc minutes}$

e25 DIN 3967

Reference Diameter d (mm) Over Upto	Upper Tooth Thickness Allowance A _{sne}	Tooth Thickness Tolerance T _{sn}
- 10	-0.022mm	0.020mm
10 50	-0.030mm	0.030mm
50 125	-0.040mm	0.040mm
125 280	-0.056mm	0.050mm

7e DIN 58405

Reference Diameter	Normal Module	Upper Tooth Thickness Allowance	Tooth Thickness Tolerance
d (mm)	m _{sn}	A _{sne}	T _{sn}
	>0.16 to 0.25	0.028	0.011
from 3 to 6	>0.25 to 0.6	0.030	0.012
	>0.6 to 1.6	0.035	0.014
	>0.16 to 0.25	0.030	0.012
>6 to 12	>0.25 to 0.6	0.035	0.014
	>0.6 to 1.6	0.040	0.016
	>0.16 to 0.25	0.035	0.014
>12 to 25	>0.25 to 0.6	0.040	0.016
	>0.6 to 1.6	0.045	0.018
	>1.6 to 3	0.050	0.020
	>0.16 to 0.25	0.040	0.016
>25 to 50	>0.25 to 0.6	0.045	0.018
	>0.6 to 1.6	0.050	0.020
	>1.6 to 3	0.055	0.022
	>0.16 to 0.25	0.045	0.018
>50 to 100	>0.25 to 0.6	0.050	0.020
	>0.6 to 1.6	0.055	0.022
	>1.6 to 3	0.063	0.024
>100 to 200	>0.6 to 1.6	0.063	0.024
	>1.6 to 3	0.070	0.029
>200 to 400	>0.6 to 1.6	0.070	0.029
	>1.6 to 3	0.080	0.032

* A_{sne} is converted from base tangent length allowance (A_w) according to $A_w = A_{sn}$ * cos 20°

Backlash

Example for Calculating Backlash for Two Non-Identical Gears

Input Gear PSG0.5-20 7e Output Gear PSG0.5-40 7e

- 1. Calculate the reference diameter d for each gear PSG0.5-20 d₁ = z * mn = 10.00mmPSG0.5-40 d₂ = 20.00mm
- 2. Find A_{sne} and T_{sn} from the tables overleaf PSG0.5-20 A_{sne} = -0.035mm T_{sn} = -0.014mm PSG0.5-40 A_{sne} = -0.040mm T_{sn} = -0.016mm
- 3. Calculate A_{sni} for each gear PSG0.5-20 $A_{sni} = A_{sne} - T_{sn} = -0.035-0.014 = -0.021 mm$ PSG0.5-40 $A_{sni} = A_{sne} - T_{sn} = -0.040-0.016 = -0.024 mm$
- 4. Calculate the centre distance of the two gears and the centre distance tolerance centre distance = (10 + 20) / 2 = 15mm Js7 = ±0.009mm
- 5. Calculate the change in backlash due to centre distance

$$\Delta j_a = 2 \bullet A_s \bullet \frac{\tan \alpha_n}{\cos \beta} + 2 \bullet 0.009 \bullet \frac{\tan 20}{\cos 0} = 0.007 mm$$

Remove the minus sign on ${\sf A}_{{\sf sn}}$

$$j_t = \frac{A_{sne1} + A_{sne2}}{\cos\beta} + \Delta j_a = \frac{0.035 + 0.040}{\cos0} + 0.007 = 0.082mm$$

7. Calculate the minimum backlash

$$j_t = \frac{A_{sni1} + A_{sni2}}{\cos\beta} + \Delta j_a = \frac{0.021 + 0.024}{\cos0} - 0.007 = 0.038 mm$$

8. Convert to angular backlash

$$j_{\theta} = \frac{360 \times j_{t}}{\pi \times d_{2}}$$
 1° = 60 arc minutes

 j_{θ} = 28.208 to 13.072 arc minutes

Hole Sizes (mm)

Over	3	6	10	18	30	40	50	65	80	100	120	140 160	18	0 200	225
Inc.	6	10	18 . 3 \	30	40	50	65	80	100	120	140	160 180	20	0 225	250
Micro	metre	es (10 ⁻	'm)			1	<u>ہ</u> ا	0	l r		I	<u>()</u>	I	70	
F6	18	22	2/	33 20	4	 _		.9		8		68		/9 50	
	10	13	10	20 41	2	С О	5	0	-	00 71		43		06	
F7	10	20 13	54 16	41 20	נ ר	5		0		26		دە ١٦		90 50	
	10	14	17	20	2	5	2	9	-	84		4J 20		<u> </u>	
G6	4	5	6	20 7	2)		0	1	2		14		15	
	16	20	24	28	3	4	4	.0	Z	17		54		61	
G7	4	5	6	7	Ç)	1	0	1	2		14		15	
	8	9	11	13	1	6	1	9	2	22		25		29	
H6	0	0	0	0	()	(C		0		0		0	
117	12	15	18	21	2	5	3	0		35		40		46	
п/	0	0	0	0	()	(C		0		0		0	
ЦQ	18	22	27	33	3	9	4	6	Ę	54		63		72	
110	0	0	0	0	()	()		0		0		0	
Н9	30	36	43	52	6	2	7	4	8	37		100		115	
	0	0	0	0	()	()		0		0		0	
H10	48	58	70	84	10)()	12	20	1	40		160		185	
	0	0	0	0	()	()	-	0		0		0	
H11	75	90	110	130	16	50	19	90	2	20		250		290	
	0	0	0	0	()	() C	1	0		0		0	
J6	С С		0	ð 5	I	0		5		6		18		22	
	-5	_4 	-5	-5 12	1	0 1	1	Q Q	-	-0)		-/		-/	
J7	-6	_7	-8	12 _9	_1 _1	+ ⊢1	 _'	0 1 7	_	13		_14		_16	
	10	12	15	20	2	4	2	8	1	34		41		47	
J 8	-8	-10	-12	-13	-1	5		18	_	20		-22		-25	
18.4	4	4.5	5.5	6.5	8	3	9	.5	1	1		12.5		14.5	
JS6	-4	-4.5	-5.5	-6.5	_	8		9.5	_	11		-12.5		-14.5	
167	6	7.5	9	10.5	12	.5	1	5	1	7.5		20		23	
721	-6	-7.5	-9	-10.5	-12	2.5		15	-1	7.5		-20		-23	
158	9	11	13.5	16.5	19	9.5	2	3	2	27		31.5		36	
120	-9	-11	-13.5	-16.5	-19	9.5	-2	23	-	27		-31.5		-36	
K6	2	2	2	2	(†)	3	4	4		4		4		5	
	-6	-7	-9	-11	-1	3	- '	15	-	18		-21		-24	
M6	-1	-3	-4	-4	_	4	-	-5	-	-6		-8		-8	
	-9	-12	-15	-17	-2	20	-2	24	-	28		-33		-37	
M7	0			0	()		J		0		0		0	
	-12	-15	- 8	-21	-2	25	-	30	-	35		-40		-46	

T: +44 1246 455500 sales@ondrives.com www.ondrives.com

Updated July 2021 subject to change for use as a guide only.

Gear Technica

Ho	e	Sizes	(mm)
	-		(

Over	3	6	10	18	30 40	50 65	80 100	120 140 160	180 200 225	
Inc.	6	10	18	30	40 50	65 80	100 120	140 160 180	200 225 250	
Micrometres (10 ⁻³ m)										
	-10	-13	l –16	-20	-25	-30	-36	-43	-50	
f6	-18	-22	-27	-33	-41	-49	-58	-68	-79	
67	-10	-13	-16	-20	-25	-30	-36	-43	-50	
1/	-22	-28	-34	-41	-50	-60	-71	-83	-96	
a 5	-4	-5	-6	-7	-9	-10	-12	-14	-15	
y5	-9	-11	-14	-16	-20	-23	-27	-32	-35	
ae	-4	-5	-6	-7	-9	-10	-12	-14	-15	
90	-12	-14	-17	-20	-25	-29	-34	-39	-44	
q7	-4	-5	-6	-7	-9	-10	-12	-14	-15	
5	-16	-20	-24	-28	-34	-40	-4/	-54	-61	
h6	0	0	0		0	0	0	0	0	
	-8	-9		-13	-10	-19	-22	-25	-29	
h7	12	15	18	21	0 25	30	0 35	40	16	
	0	-15	-10	-21	-25	-30	-55	-40	-40	
h8	-18	-22	-27	-33	-39	-46	-54	-63	-72	
	0	0	0	0	0	0	0	0	0	
h9	-30	-36	-43	-52	-62	-74	-87	-100	-115	
h 10	0	0	0	0	0	0	0	0	0	
niu	-48	-58	-70	-84	-100	-120	-140	-160	-185	
h11	0	0	0	0	0	0	0	0	0	
	-75	-90	-110	-130	-160	-190	-220	-250	-290	
i6	6	7	8	9	11	12	13	14	16	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-2	-2	-3	-4	-5	-7	-9	-11	-13	
j7	8	10	12	13	15	18	20	22	25	
-	-4	-5	-6	-8	-10	-12	-15	-18	-21	
js5	2.5 2.5	2	4	4.5	2.2 5.5	0.5 6.5	7.5 7.5	9	10	
	-2.5 A	-5 45	-4 55	65	-J.J 8	-0.5	-7.5	125	14.5	
js6	_4	-4 5	-55	-65	-8	-95	-11	-12.5	-14.5	
	6	7.5	9	10.5	12.5	15	17.5	20	23	
js7	-6	-7.5	-9	-10.5	-12.5	-15	-17.5	-20	-23	
Ŀ¢	9	10	12	15	18	21	25	28	33	
KO	1	1	1	2	2	2	3	3	4	
m6	12	15	18	21	25	30	35	40	46	
ino	4	6	7	8	9	11	13	15	17	
m7	16	21	25	29	34	41	48	55	63	
,	4	6	7	8	9	11	13	15	17	

ondriv e Precision Gears

Modifications

Bore Size d Over	Bore Size d Including	Keyway Size b x h	Pin Hole	Tapped Hole
-	6	-	1.5	M3 x 0.5
6	8	2 x 2	2.0	M3 x 0.5
8	10	3 x 3	3.0	M3 x 0.5
10	12	4 x 4	4.0	M4 x 0.7
12	17	5 x 5	5.0	M5 x 0.8
17	22	6хб	6.0	M6 x 1.0
22	30	8 x 7	8.0	M8 x 1.25
30	38	10 x 8	10.0	M10 x 1.5
38	44	12 x 8	10.0	M10 x 1.5
44	50	14 x 9	10.0	M12 x 1.75

Keyways to DIN 6885 Js9 sliding fit. D10 free fit and P9 tight fit available on request. Woodruff keyways available on request. Standard bore tolerance H7 ISO 286. Other tolerances available.

Special bore shapes available including square and hexagon.

	Wi	dth		Rad	lius			
Key	Shaft b	Bore b	Sha	ft t ₁	Boi	re t ₁	r	•
b x h	N9	Js9	Nominal	Tolerance	Nominal	Tolerance	Max -	- Min
2 x 2	-0.004/-0.029	+0.012/-0.012	1.2	+0.10/-0.00	1.0	+0.10/-0.00	0.16 -	- 0.08
3 x 3	-0.004/-0.029	+0.012/-0.012	1.8	+0.10/-0.00	1.4	+0.10/-0.00	0.16 -	- 0.08
4 x 4	+0.000/-0.030	+0.015/-0.015	2.5	+0.10/-0.00	1.8	+0.10/-0.00	0.16 -	- 0.08
5 x 5	+0.000/-0.030	+0.015/-0.015	3.0	+0.10/-0.00	2.3	+0.10/-0.00	0.25 -	- 0.16
бхб	+0.000/-0.030	+0.015/-0.015	3.5	+0.10/-0.00	2.8	+0.10/-0.00	0.25 -	- 0.16
8 x 7	+0.000/-0.036	+0.018/-0.018	4.0	+0.20/-0.00	3.3	+0.20/-0.00	0.25 -	- 0.16
10 x 8	+0.000/-0.036	+0.018/-0.018	5.0	+0.20/-0.00	3.3	+0.20/-0.00	0.40 -	- 0.25
12 x 8	+0.000/-0.043	+0.021/-0.021	5.0	+0.20/-0.00	3.3	+0.20/-0.00	0.40 -	- 0.25

